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Abstract
Our recent work has focused on the application of infinite group theory and related algebraic geometric tools in the context 
of transcription factors and microRNAs. We were able to differentiate between “healthy” nucleotide sequences and disrupted 
sequences that may be associated with various diseases. In this paper, we extend our efforts to the study of messenger RNA 
(mRNA) metabolism, showcasing the power of our approach. We investigate (1) mRNA translation in prokaryotes and eu-
karyotes, (2) polyadenylation in eukaryotes, which is crucial for nuclear export, translation, stability, and splicing of mRNA, 
(3) microRNAs involved in RNA silencing and post-transcriptional regulation of gene expression, and (4) identification of 
disrupted sequences that could lead to potential illnesses. To achieve this, we used: (a) infinite (finitely generated) groups fp, 
with generators representing the r + 1 distinct nucleotides and a relation between them [e.g., the consensus sequence in the 
mRNA translation (i), the poly (A) tail in item (ii), and the microRNA seed in item (iii)]; (b) aperiodicity theory, which connects 
healthy groups fp to free groups Fr of rank r and their profinite completion r̂F , and (c) the representation theory of groups fp 
over the space-time-spin group SL2(C), highlighting the role of surfaces with isolated singularities in the character variety. Our 
approach could potentially contribute to the understanding of the molecular mechanisms underlying various diseases and help 
develop new diagnostic or therapeutic strategies.
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Introduction
Genome-scale metabolic pathways, genome-environment interac-
tions, the immune response, post-transcriptional regulatory mech-
anisms, and oncohistones represent aspects of a research field con-
necting the heritable genetic code to other biological codes.1–6 The 
aforementioned genetic code is defined precisely as a noninjective 
map from the 64 codons to the 20 amino acids. Both finite groups 
and quantum groups have leading roles in modeling this code.7–10 
More explicitly, according to Planat et al.,8 complete quantum in-
formation is encoded in the 22 irreducible characters of the small 
group (240,105) ≌ Z5 ⋊ 2O, with 2O the binary octahedral group. 
The characters are put in correspondence with the DNA multiplets 
encoding the proteinogenic amino acids and the multiplicity is re-
flected in the dimension of the character representation. Further 
developments were explored in another study by Planat et al.,11 
which showed that the small group (336,118) ≌ Z7 ⋊ 2O is another 

model of the genetic code reflecting the symmetry of the Lsm–7 
complexes in the spliceosome. The eight-fold symmetric histone 
complex was subsequently investigated by Planat et al.,12 with the 
character table of the group (384, 5,589) ≌ Z8 ⋊ 2O.

The latest studies were the first to describe the role of a specific 
algebraic surface, called the Kummer surface, in the quantum mod-
eling of the genetic code. From then on, we refer to the epigenetic 
code as all processes that reveal and execute gene expression. This 
includes DNA methylation processes,13 messenger RNA (mRNA) 
translation preparation, the poly(A) tail, the RNA-induced silenc-
ing complex, a vital tool in gene regulation comprising single 
strands of RNA and double strands of small interfering RNA, and 
other regulatory nucleotide sequence fragments that are discarded 
after splicing. Ultimately, this involves a relation between the epi-
genetic code and morphogenesis.14

Chemical modifications of RNA also drive the metabolism of 
transcription of the genetic information. Post-transcriptional regu-
lation of gene expression is a hot topic known as epitranscriptom-
ics. There are more than 170 known types of RNA methylation 
processes but the most common in eukaryotes is the possible meth-
ylation of N6-methyladenosine (m6A) on sites with a specific short 
sequence RRACH (R = A or G, H = A, U, or C).15–17

To study the epigenetic code (hereinafter referred to as the e-
code), we used infinite (finitely generated) groups denoted by fp, 
and their representations over the (2 × 2) matrix group SL2(C), 
where the entries are complex numbers.18,19 The significance of 
this group extends across all fields of physics, as it represents a 
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space-time-spin group. In this study, we applied a mathematical 
field known as algebraic geometry to define the e-code, which has 
not been done before.

Our key observation is that an fp group associated with a healthy 
sequence usually approximates a free group Fr, where the rank r 
equals the number of distinct nucleotides minus one. A sequence 
deviating from this may suggest a potential e-code deregulation 
leading to a disease. However, an fp group closely resembling a 
free group does not provide sufficient assurance against a disease. 
Additional examination of the SL2(C) representations of fp, termed 
the character variety, and specifically its basis called a Groebner 
basis G is necessary. The G comprises a set of surfaces. A sur-
face within G containing isolated singularities indicates another 
potential disease that can be identified specifically, e.g., relating 
to an oncogene or a neurological disorder.19 The e-code we define 
comprises such algebraic geometric characteristics.

An additional attribute of healthy sequences, which leads to a 
group fp approximating the free group Fr and not mentioned in 
the study of Planat et al.,19 is their connection to aperiodicity. 
Schrodinger proposed the periodicity of living crystals.20 Planat 
et al.19 characterized aperiodic DNA sequences.21 We advanced 
this concept by introducing the so-called profinite completion r̂F  
of the free group Fr. A sequence fp(l) of finitely generated groups 
approaching Fr emerges by applying l repeated substitutions to 
the generators of fp. However, all distinct groups fp(l) should pos-
sess the same profinite completion Fr. Profinite groups 1̂F  (cor-
responding to sequences containing two distinct nucleotides) and 

2̂F  (corresponding to sequences containing three distinct nucleo-
tides) have been examined in a prominent algebraic geometry trea-
tise.22 We present the details below in a manner that is accessible 
to a non-specialist reader. In the Methods section, we illustrate our 
mathematical concepts through a few simple pedagogical exam-
ples. In the Results section, we apply these concepts to cases of 
mRNA translation, microRNAs (miRNAs), and m6A methylation. 
In the Discussion, we provide additional comments, a summary 
diagram, and perspectives.

Methods and preliminary results

Infinite finitely generated groups fp and free groups Fr

TATA box
We start with a simple example of an infinitely finitely gener-
ated group taken from the context of introns. The DNA sequence 
located in the core promoter region of many eukaryotic genes 
is the Goldberg–Hogness sequence, also known as the TATA 
box. This sequence contains a noncoding segment with repeat-
ed T and A base pairs. The TATA box serves as the binding site 
for the TATA-binding protein and other transcription factors in 
some eukaryotic genes. Its consensus sequence takes the form 
rel = TATAAAA. Variations in this consensus sequence, resulting 
from genetic polymorphism, can lead to diseases like Gilbert’s 
syndrome and immune suppression (https://en.wikipedia.org/
wiki/TATA_box).

In our methodology, we defined the group fp = 〈A,T|rel〉, which 
contains an infinite number of elements. There are numerous 
ways to investigate this group, but we opted for a specific one. 
This method involves calculating the number of conjugacy classes 
of subgroups of index d of fp (a sequence we refer to as the card 
seq of fp). The card seq of fp for the selected TATA sequence is 
[1,1,2,3,2,8,7,10,18,28···]. Interestingly, the group H3 = 〈A, T|A2 
= T3〉 has a similar card seq (at least up to the highest index we can 

reach with the calculations). The group H3, as defined, is isomor-
phic to the so-called modular group PSL(2,Z) – the projective spe-
cial linear group of (2 × 2) matrices of determinant 1 with integer 
entries. This group has an intriguing topological interpretation as 
the fundamental group of the trefoil knot manifold. Thus, we find 
that the group fp is close to H3 as the card seq of both groups is the 
same, but we can easily verify that fp and H3 are not isomorphic. 
According to Planat et al.,23 the Hecke groups Hq = 〈A, T|A2 = Tq〉, 
with q = 3 or 4, have a card seq corresponding to healthy TATA box 
sequences. The fp group for a TATA box with a card seq resembling 
that of Hecke groups, with q ≠ 3 or q ≠ 4, or even that of groups 
slightly different from H3 and H4, signifies Gilbert’s syndrome.

Polyadenylation signals
For our second example, we select a sequence from the context 
of eukaryotic polyadenylation (https://en.wikipedia.org/wiki/Poly-
adenylation). Polyadenylation involves the addition of a poly(A) 
tail to an RNA transcript, usually a mRNA. A consensus poly(A) 
sequence takes the form rel1 = AAUAAA, which corresponds to 
a two-generator group of the form fp = 〈AU|rel1〉. The card seq 
of such a group is found to be [1,1,1,1,1,1,1,1,1,1,···], implying 
a single conjugacy class for each index. It appears that the free 
group F1 = 〈A, U|AU〉, of rank 1, has the same card seq as the 
fp group with relation rel1, even though neither group is isomor-
phic. Another consensus poly(A) sequence takes the form rel2 = 
UGUAA, which corresponds to a three-generator group of the 
form fp 〈A, U, G|rel2〉. The card seq of such a group is found to be 
[1,3,7,26,97,624,4,163,···]. Intriguingly, the free group F2 = 〈A, 
U, G|AUG〉, of rank 2, has the same card seq as the fp group with 
relation rel2, despite both groups not being isomorphic. From our 
perspective, DNA/RNA sequences that lead to fp groups closely 
resembling a free group are considered healthy sequences.19,21,23 
The standard poly(A) sequences mentioned earlier play a regulato-
ry role in producing mature mRNA during translation. Sequences 
that generate an fp group diverging from a free group Fr may be 
indicative of a disease.

Aperiodic sequences, their attached groups fp and free groups
In this subsection, we elucidate how a group fp, with a card seq 
identified to be close to a free group Fr, can be linked to an ape-
riodic sequence and the profinite completion r̂F . We introduced 
the concept of aperiodic groups and sequences in our earlier pa-
pers.21,23 Consider the motif rel = TTTATTA, which serves as a 
consensus sequence for the transcription factor of the DBX gene 
in Drosophila melanogaster (fruit fly). This gene is involved in 
neuronal specification and differentiation. The group fp = 〈A, T|rel〉 
has the same card seq as the free group F1 of rank 1. Furthermore, 
by splitting rel into two segments rel = relArelT and applying the 
substitution maps A → relA = TTTA, T → relT = TTA, we generate 
the substitution sequence SDBX = A,T,AT,TTTATTA,TTATTATTATT
TATTATTATTTA,···. On inspection, it is straightforward to observe 
that all finitely generated groups fp(l), with their generators be-
ing AT,TTTATTA,TTATTATTATTTATTATTATTTA,···, respectively, 
have the card seq of F1.

As per the findings of Planat et al.,23 for a substitution rule to 
be considered aperiodic it must satisfy two conditions: (1) The 
substitution matrix M must be primitive, meaning it should be a 
strictly positive matrix (all entries > 0), irreducible, and Mk should 
be strictly positive for some k. This condition is denoted as M ≫ 
0. (2) The Perron–Frobenius λPF eigenvalue must be irrational. It 
is worth noting that the Perron–Frobenius eigenvector of an irre-
ducible non-negative matrix is the only one whose entries are all 
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positive. The aforementioned sequence has a substitution matrix:
1 3

.
1 2

M  
=  
 

 

One can verify that M is primitive as M2 ≫ 0 and 
=3 13 / 2PFλ + . Conditions (1) and (2) are satisfied, implying 

that the substitution SDBX is aperiodic. Of note, numerous other 
genes have transcription factors with a motif rel generating an ape-
riodic sequence.21

Aperiodic sequences and the profinite groups ˆ
rF

This section can be skipped without affecting the comprehension 
of the rest of the paper. It endeavors to answer the question of why 
the aforementioned groups fp(l) produce the same card seq as that 
of the free group Fr. The tentative answer is that the profinite com-
pletion of all groups fp(l) is the profinite group 1̂F . By making this 
observation, we aligned the aperiodicity of sequences with profi-
nite groups. Profinite groups were introduced by Grothendieck in 
the context of algebraic geometry.22 Here, we describe the neces-
sary ingredients for the layperson, focusing first on 1̂F  and then on 

2̂F , and their relevance to our present work.
A group G can be considered a topological group by applying 

discrete topology, in which the elements of G are points of a dis-
crete space, form a discontinuous sequence, and are isolated from 
each other. Every subset is open in the discrete topology. A profi-
nite group is a topological group that, in a certain sense, is assem-
bled from a system of finite groups. A profinite group requires a 
system of finite groups and group homomorphisms between them. 
Given a group G, there is a related profinite group G defined as 
the inverse limit Ĝ = lim←G/N, of the groups G/N, where N runs 
through the normal subgroups of G of finite index. A normal sub-
group is a subgroup that remains invariant under conjugation by 
members of the group. Each finite quotient group corresponds to a 
normal subgroup N of G and the profinite completion Ĝ can be per-
ceived as containing an analog of each of these normal subgroups. 
The profinite group Ĝ exhibits several properties: it is nonabelian, 
residually finite, (meaning that for any nonidentity element g in Ĝ, 
there exists a finite quotient of Ĝ in which g is not the identity), 
and totally disconnected (meaning that the only connected subsets 
of Ĝ are singletons, sets containing only one element). In general, 
an explicit construction of profinite groups Ĝ cannot be obtained. 
However, 1̂F  and 2̂F  are not too complex to handle.

Considering the profinite group 1̂F , we begin with 1̂F . The free 
group F1 on a single generator can be described as a group with one 
generator, say a, and no relations. It consists of all possible finite 
strings that can be formed by combining the generator and its in-
verse. It is the infinite cyclic group Z = {1,a,a−1,a2,a−2,a3,a−3,···}. 
Now, we discuss the profinite completion of F1. The profinite 
group 1̂F  is isomorphic to the group of all units of the commutative 
ring of p-adic integers Zp, across all primes p. It is often denoted as 
Zp

*, as it corresponds to the elements of Zp with a valuation of zero. 
The p-adic integers are a special class of numbers used in number 
theory and algebraic geometry.

Considering the profinite group 2̂F , we briefly discuss 2̂F . This 
topic was first described by Grothendieck.22 The subject is com-
plex and connected to the so-called Belyi theorem, a fundamental 
result that establishes a connection between algebraic curves de-
fined over the algebraic closure of the rationals, Q, and certain ra-
tional functions called Belyi functions. An algebraic curve defined 
over Q can be represented as a branched covering of the Riemann 
sphere (the complex projective line P1(C)) branched only over 
three points (usually taken as 0, 1, and ∞) if and only if the curve 
itself is defined over a number field, which is a finite extension of 

the field of rational numbers Q.
In other words, the Belyi theorem implies that an algebraic 

curve defined over a number field can be mapped to the Riemann 
sphere in such a way that the ramification (branching) is restrict-
ed to just three points. The rational functions that provide these 
branched coverings are known as Belyi functions. The significance 
of the Belyi theorem lies in the fact that it provides a method to 
study algebraic curves defined over number fields by analyzing 
their ramified coverings and the associated ‘dessins d’enfants’, 
which are combinatorial objects encoding the ramification data. 
Specifically, we have the crucial result that:

1
1 2̂ˆ ( ( ) \{0,1, })P C Fπ ∞ ≅

i.e. the so-called étale fundamental group for the triply branched 
projective line is the profinite group 2̂F .

SL2(C) representations of groups fp and a Groebner basis G
While the previous section describing profinite groups showcases 
the importance of algebraic geometry in the context of DNA/RNA 
sequences, it remains somewhat abstract. To address this, we can 
consider the representations of an fp group over the space-time-
spin group SL2(C), as we did in previous studies.18,19,21 Represen-
tations of fp in SL2(C) are homomorphisms ρ: fp → SL2(C) with 
character κρ(g) = tr(ρ(g)), g ∊ fp.The notation tr(ρ(g)) signifies the 
trace of the matrix ρ(g). The set of characters is used to determine 
an algebraic set by taking the quotient of the set of representations 
ρ by the group SL2(C), which acts by conjugation on representa-
tions.24,25 In such papers, we showed that the character variety of 
fp is a set comprised of a sequence X of multivariate polynomials. 
A particular basis related to X is the Groebner basis G(X), whose 
factors define hypersurfaces.

Our previous paper focused on a possible algebraic approach of 
topological quantum computing.18 In two subsequent papers,19,21 
we investigated SL2(C) representations of short DNA/RNA se-
quences (e.g., the consensus sequence of a transcription factor or 
the seed of a miRNA) and related them to a potential disease. For a 
two-generator group fp, the factors are three-dimensional surfaces. 
In general, these surfaces can be classified by mapping them to a 
rational surface across five categories.19 Often encountered sur-
faces are degree p Del Pezzo surfaces where 1 ≤ p ≤ 9. A rational 
surface may either be nonsingular, almost nonsingular, having only 
isolated singularities, or singular. Almost nonsingular surfaces are 
key in our context. A simple singularity is referred to as an A-D-E 
singularity and must be of the type An, n ≥ 1, Dn, n ≥ 4, E6, E7, or 
E8. The A-D-E type is mirrored in the notation we employ. For 
instance, S(lA1,mA2,nA3,···) denotes a surface containing l type A1, m 
type A2, n type A3 singularities, etc. A generic surface is the Cayley 
cubic we encountered in our previous papers, defined as S(4A1) = 
xyz+x2 +y2 +z2 −4.19

For a three-generator group fp, the factors of G(X) are seven-di-
mensional surfaces of the form Sa,b,c,d(x,y,z). Some of them belong 
to the Fricke family,19 which is associated with the four-punctured 
sphere. But for a chosen set of parameters a,b,c,d, the hypersur-
face reduces to an ordinary three-dimensional surface. For a four-
generator group fp, the factors of G(X) are 14-dimensional surfaces 
containing four copies of the form S(x,y,z), S(x,u,v), S(y,u,v), and 
S(z,v,w) for selected choices of eight parameters.

Groebner basis of the TATA box
The Groebner basis for the character variety associated with the fp 
group of generators rel = TATAAAA of the TATA box as discussed 
above, is found to be:

https://doi.org/10.14218/GE.2023.00079
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GTATA = (z4 − xy2 − xyz + x2 + y2 + yz − 3z2 + x − 2) (x2z −  
xy − xz + y − z) S(A2)S(A4) (x3 − z2 − 3x + 2),

where S(A2) = x2y − z3 – xz – y + 3z and S(A4) = xz2 –x2 –yz − x 
+ 2 are degree 3 Del Pezzo surfaces. The Groebner basis GTATA 
comprises a degree 2 Del Pezzo surface (Fig. 1a, and a rational 
scroll whole analytic expression is in the first row. Both surfaces 
are singular. The second row consists of two surfaces with simple 
singularities of type A2 and A4, respectively. The last term repre-
sents a curve (not a surface).

Groebner basis for polyadenylation signals
For the first polyadenylation signal considered in the paragraph 
describing infinite finitely generated groups. The relation of the fp 
group is rel1 = AAUAAA. The corresponding Groebner basis is:

Grel1 = 3 rational scrolls × P2 × S(4A1)S(A1) × curve.
The Groebner basis Grel1 contains three rational scrolls, a sur-

face birationally equivalent to the projective plane P2, the Cayley 
cubic S(4A1), the degree 3 Del Pezzo surface S(A1) = x2y − xz2 – xz + 
yz + x − y (Fig. 1b) and a curve.

For the second polyadenylation signal considered above in the 
paragraph describing groups fp and Fr, the relation of the fp group is 
rel2 = UGUAA. The factors of G(X) are seven-dimensional hyper-
surfaces Sa,b,c,d(x,y,z). However, by choosing specific parameters, 
such as S0,0,0,0(x,y,z) or S1,1,1,1(x,y,z), we obtained three-dimension-
al surfaces. These were found to be degree 3 Del Pezzo surfaces 
with simple singularities of the form S(lA2), with l = 1, 2, or 3, 
quadrics, or curves.

Groebner basis of the transcription factor of DBX gene
For the DBX gene studied in the paragraph on aperiodic sequences, 
the Groebner basis takes the form of GDBX = scroll × P2 × S(A4) × 
S(A2) × S(4A1) × curve, where scroll = y2z − xy − yz + x − z and P2 = 
z4 − x2y + xz − 4z2 + y + 2 are singular. The other factors are DP3 
surfaces with isolated singularities that are S(A4) = yz2 − y2 − xz − 
y2, S(A2) = z3 − xy2 + yz + − 3z, the Cayley cubic S(4A1) and curve = 
y3 − z2 − 3y + 2.

Further results
In this section, we describe additional results related to mRNA me-
tabolism and miRNA.

Algebraic geometry of mRNA translation

Shine-Dalgarno box
Ribosomal RNA is a type of noncoding RNA and is the main com-
ponent of a macromolecular machine, called the ribosome, whose 

role is to ensure mRNA translation. The initiation of translation 
needs the recognition of the appropriate sequences on the mRNA 
by the ribosome. A major factor in this recognition is an mRNA–
ribosomal RNA interaction first proposed by Shine and Dalgar-
no.26 They proposed that the ribosomal nucleotides recognize the 
complementary purine-rich sequence rel3 = AGGAGGU, which is 
found approximately eight bases upstream of the start codon AUG 
in a number of mRNAs found in viruses that affect Escherichia 
coli.

Let us study the group fp = 〈A, G, U|rel3〉. The card seq of fp is 
found to be the same as that of the free group F2. The SL2(C) char-
acter variety is a scheme X whose Groebner basis G(X) comprises 
7-dimensional surfaces Sa,b,c,d(x,y,z). By projecting to three dimen-
sions, one gets surfaces like S0,0,0,0(x,y,z) and S1,1,1,1(x,y,z) as in the 
paragraph describing SL2(C) representations of groups fp. We find 
degree 3 Del Pezzo surfaces with isolated singularities S(A1) = x2y 
+ yz2 +4xz + 4y and x2y + yz2 +x +z2 +6xz + 5y − 6z − 7, S(A2) 
= xyz + 2x2 + z2 +4 and S(A4) = xyz + 3x2 +z2 − 5z, quadrics, and 
curves.

Kozak consensus sequence
The Kozak consensus sequence is a nucleotide motif that functions 
as the protein translation initiation site in most eukaryotic mRNA 
transcripts.27 The small (40S) subunit of eukaryotic ribosomes 
bind, initially at the capped 5′-end of the mRNA and then migrate, 
stopping at the first AUG codon in a favorable context for initiat-
ing translation. In eukaryotes, the Kozak sequence ensures that a 
protein is correctly translated from the genetic message, mediating 
ribosome assembly and translation initiation. A sequence logo of 
the most conserved bases around the initiation codon AUG for hu-
man mRNAs may be found in the first caption of Kozak (https://
en.wikipedia.org/wiki/Kozak) consensus sequence as rel4 = AC-
CAUGGC.

Let us study the group fp = 〈A, C, G, U|rel4〉. The card seq of 
fp is found to be the same as that of the free group F3 of rank 3. 
This group can be linked to an aperiodic sequence by following 
the steps given in the paragraph describing aperiodic sequences. 
By splitting rel4 into four segments rel4 = relArelCrelGrelU and ap-
plying the substitution maps C → relC = A, A → relA = CCAUG, 
U → relU = G, G → relG = C, we generated the substitution se-
quence: SKozak = C,A,U,G,CAUG,ACCAUGGC,CCAUGA2CCAU
GGC2A,···.

On inspection, it is straightforward to observe that all finitely 
generated groups fp(l) with their generations being CAUG, AC-
CAUGGC, CCAUGA2CCAUGGC2A,···, respectively, have a card 
seq of F3. The aforementioned sequence has a substitution matrix:

Fig. 1. Two types of Del Pezzo surfaces. (a) Degree 2 Del Pezzo surface within GTATA. (b) Degree 3 Del Pezzo surface S(A1) within Grel1.
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0 2 0 1
1 1 0 0

.
0 1 0 0
0 1 1 0

M

 
 
 =
 
 
 

One can verify that M is primitive as M4 ≫ 0 and λPF ≈ 
2.2055694 is the only real (and irrational) solution of the equation 
x3 − 2x2 – 1=0. Conditions (1) and (2) for aperiodic sequences are 
satisfied, implying that the substitution SKozak is aperiodic. Rittaud 
discussed the connection of the later Perron–Frobenius eigenvalue 
to random Fibonacci sequences.28

Mutation of a purine at position −3 with respect to the AUG 
codon is known to be associated with diseases including a type 
of thalassemia owing to a bad initiation of alpha-globin.27 In our 
approach, the mutation from rel4 to rel4′ = CCCAUGGC leads to 
a substitution M′that is no longer primitive, so that the property of 
aperiodicity of the sequence is lost. However, the card seq of the 
associated fp group is still that of the free group F3. No other substi-
tution in the sequence rel4′ can be found to restore the aperiodicity.

Algebraic geometry of miRNAs
miRNAs are small, single-stranded, noncoding RNA molecules 
containing approximately 22 nucleotides. miRNAs play crucial 
roles in RNA silencing and post-transcriptional regulation of gene 
expression by specifically targeting certain mRNAs for degrada-
tion and translational repression(https://en.wikipedia.org/wiki/Mi-
croRNA).29 miRNA genes are typically transcribed by RNA poly-
merase II (Pol II), which binds to a promoter located near the DNA 
sequence, encoding what will become the hairpin loop of a precur-
sor (pre)-miRNA. Pre-miRNAs are approximately 70 nucleotides 
long and fold into imperfect stem-loop structures. A miRNA con-
sists of a duplex comprising two strands (−5p and −3p). However, 
a single strand is selected into the RNA-induced silencing complex 
to serve as a template during the transcription of a complementary 
mRNA.30,31 For details of the miRNA sequences, we use the Mir 
database (https://www.mirbase.org/).32,33 It should be emphasized 
that a given miRNA may have hundreds of different mRNA targets 
and a single target may be regulated by multiple miRNAs. For pre-
vious discussions of how to define an fp group from the seed of a 
miRNA, the reader may consult a recent review.19 Below, we focus 
on other examples.

miRNA hsa-mir-122
mir-122 is a tissue-specific miRNA that is highly expressed in the 
liver.34 It is involved in cholesterol accumulation and fatty acid 
metabolism. It has a leading role in controlling the hepatitis C vi-
rus.35,36 The seed region for mir-122-5p is seed0 = GGAGUGU. 
The corresponding group fp = 〈C, G, U|seed0〉 has the card seq of 
the free group F2. Let us first check if the seed sequence is aperi-
odic. By splitting seed0 into three segments seed0 = seedA seedG 
seedU and applying the substitution maps A → seedA = GG, G → 
seedG = AGU, U → seedU = GU, one can check that the finitely 
generated groups fp(l) with generators GGAGUGU, AGUAGUG-
GAGUGUAGUGU, possess the card seq of the free group F2. 
Following the method described in the section on aperiodic se-
quences, their attached and free groups, one gets the (primitive) 
substitution matrix:

0 1 0
2 1 1
0 1 1

M
 
 =  
 
 

whose characteristic polynomial λ3 − 2λ2 − 2λ+2 has three real 
roots. The largest one is the (irrational) Perron–Frobenius eigen-
value λPF ≈ 2.481194. One concludes that the sequence seed0 is 
aperiodic.

Let us now look at the Groebner basis for the SL2(C) representa-
tion of fp with the method described above. One obtains:

Gmir-122−5p(0,0,0,0) = 8yz(2 − z2) and Gmir-122−5p(1,1,1,1) 
= −4 z2(x − z2 +z + 1) (y + z3 − z2 − 2z)

One can check that all values of the parameters Ga,b,c,d (x, y, z) 
only contain factors that are curves and not surfaces.

miRNA hsa-mir-503
The slowest evolving miRNA gene in the human species (hsa) 
is hsa-mir-503 (https://www.mirbase.org/). It regulates gene ex-
pression in various pathological processes of diseases, includ-
ing carcinogenesis, angiogenesis, tissue fibrosis, and oxidative 
stress.37 The seed region of mir-503-5p is seed1 = AGCAGCGG. 
The corresponding group fp = 〈A, C, U|seed1〉 has the card seq 
of the free group F2. For this group, the Groebner basis with pa-
rameters (a,b,c,d) = (0,0,0,0) is quite simple: Gmir−503−5p(0,0,0,0) 
= S(4A1)(x,y,z), which is the already mentioned Cayley cubic. For 
(a,b,c,d) = (1,1,0,0), Gmir−503−5p(1,1,0,0) = −3xyzκ3(x,y,z), where 
κ3(x,y,z) is the Fricke surface described by Planat et al.38 For 
(a,b,c,d) = (1,1,1,1), there are several more polynomials. One of 
which defines the Fricke surface xyz + x2 + y2 +z2 − 2x − y – 2 = 
0. The considered seed region for mir-503-3p is GGGUAUU. The 
surfaces in the Groebner basis are very simple in this case, and no 
simple singularities exist within them.

miRNA hsa-mir-146a
mir-146 is primarily involved in the regulation of inflammation 
and other processes functioning in the innate immune system. It 
has a role in neuropathogenesis. The considered seed region for 
hsa-mir-146a-5p is seed2 = GAGAAC (https://www.mirbase.
org/). Again the corresponding group fp = 〈A, C, G|seed2〉 has the 
card seq of the free group F2. The Groebner basis with parameters 
(a,b,c,d) = (0,0,0,0) is Ghsa-146a−5p(0,0,0,0) = (xz + y + 2) (y − z2 + 
2)2 (x2 + z2 − 2y − 4) S(3A2), where S(3A2) = z3 − xy − 2yz − 2x − 4z. 
The Groebner basis with parameters (a,b,c,d) = (1,1,1,1) is of the 
form Ghsa-146a−5p(1,1,1,1) = DP4 ×f(2A2)× quadric × curves, where 
DP4 is a degree 4 del Pezzo surface.

miRNAs and disease
As described previously,19 a potential disease is associated with fp 
groups that fail to satisfy at least one of three requirements: (1) the 
card seq of fp should be that of a free group Fr; (2) the generating 
sequence should be aperiodic; or (3) the SL2(C) character variety 
of fp should have a Groebner basis devoid of isolated singularities 
even though the fp group may have the card seq of a free group.19 
Following these criteria, the sequence hsa-mir-122-5p is healthy 
but the sequences hsa-mir-503-5p and hsa-mir-146a-5p are not be-
cause criterion three is not satisfied. Additional examples can be 
found in our previous study.19

In addition to isolated singularities, the Groebner basis may 
contain unique surfaces that are not simply singular. The DP4 sur-
face in Ghsa-146a−5p(1,1,1,1) is an example of a singular surface. 
Further mathematical evaluation is required to investigate these 
surfaces.39 However, we will not include them in this review.

Discussion
Figure 2 summarizes our key results. Given a short DNA/RNA 
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sequence, rel that represents a consensus sequence in a tran-
scription factor, the seed of a miRNA, or a relevant sequence in 
mRNA recognition and processing, we constructed a finitely gen-
erated group, fp. The architecture of subgroups, card seq, within 
this group was computed, as described in the subsection about 
the infinite finitely generated groups fp. If the fp card seq matches 
that of the free group Fr (of rank r = nt − 1), we proceed to path 
four; otherwise, a potential disease could be in sight (path three). 
After reaching path four, the next step involves checking the ape-
riodicity of rel and the corresponding fp group, as described in the 
subsection about aperiodic sequences and their attached groups 
fp. The final step is to examine the presence (or absence) of iso-
lated singularities in the Groebner basis G for the SL2(C) charac-
ter variety associated with fp, as outlined in the subsection about 
SL2(C) representations of groups fp. For a healthy sequence, the 
path concludes at six, while a potential disease may be indicated 
if the path ends at three, seven, or eight.

In Table 1, we provide several examples of paths.23,31,36,37,40 
All three checks can be performed, even if paths 4 or 5 are not 
followed. For instance, the termination {7,8} signifies that the 
sequence fails both in being aperiodic and in being devoid of 
simple singularities. For sequences with four distinct nucleo-
tides, like the sequence of transcription factor FOX or the Kozak 
sequence rel4, it is difficult to make a conclusion about the risk of 
a disease. The generic Groebner basis1 G(x,y,z) always contains 

a surface with isolated singularities such as S(4A1) and S(3A1) and 
there are four copies of them. The termination {6,8} applies for 
this case.

Algebraic geometry of m6A modifications
As mentioned in the Introduction, a subfield of epigenetics deals 
with post-transcriptional mRNA modifications. m6A is the most 
frequent modification in most eukaryotes. But m6A is also present 
in bacteria, with the consensus motif GCCAG.41,42 An interesting 
aspect is that the mRNA m6A motif in bacteria is distinct from the 
consensus motif in eukaryotes (RRACH). This features the evolu-
tionary machinery present in the last eukaryotic common ancestor 
compared to the last universal common ancestor.43 In Table 2, we 
provide details of the group generated by these sequences, when 
the sequence is aperiodic and/or has a Groebner basis of its char-
acter variety containing an isolated singularity. The path in the dia-
gram of Figure 2 is shown in Table 1.

Only the bacterial sequence leads to a path terminating at edge 
6 of the diagram of Figure 2. In the closest eukaryotic sequence 
GGACA (from the viewpoint of group analysis), isolated singu-
larities are found, such as the degree 3 Del Pezzo surface S(A2A2) 
= y3 − 2xz −4y. The other sequences are not aperiodic. From the 
biological point of view, it is known that an appropriate level of 
m6A methylation is beneficial, but it may be a risk to drive it in an 
artificial way because it may destroy the delicate balance of regu-

Fig. 2. Diagram of the main results discussed in the text. For example, for the transcription factor of the gene EGR1, rel = GCGTGGGCG [25, Section 4.1.2], 
the path is 1 → 2 → 4 → 5 → 6 showing no risk of disease. But for the transcription factor of gene DBX (see the subsections about aperiodic sequences and 
the SL2(C) representations of groups), rel= TTTATTA, the path is 1 → 2 → 4 → 5 → 8 meaning a potential disease (see Table 1).
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lations performed within the mRNA.

Conclusions
Our approach was comprehensive and can be applied in numerous 
contexts beyond those we have considered thus far. It has the poten-
tial to impact the search for underlying causes of diseases and aid 
in the discovery of therapeutic strategies. The e-code, the processes 

that reveals and executes gene expression, has a sophisticated struc-
ture that our mathematical approach aimed to elucidate.
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Table 2.  Detailed group theoretical analysis of m6A modifications for bacteria (the sequence GCCAG) and eukaryotes (sequence RRACH (R = A or G, H = 
A, U, or C))

Sequence Group Aperiodic Groebner basis Path

Bacterial

  GCCAG F2 1.83928 No 1→2→4→5→6

Eukaryote

  AAACA F1 No 1→2→4→{7,8}

  AAACC H3 No 1→2→{3,7}

  AAACU F2 No S(A2), S(A1A2) No 1→2→4→7

  GGACA F2 1.83928 No 1→2→4→5→8

  GGACC F2 No S(A2), S(A2A2) No 1→2→4→7

  GGACU F3 No Unknown 1→2→4→7

Column 2 is the group closer to the fp group generated by the sequence in column 1 (Fr is for the free group of rank r, H3 is for the modular group PSL(2,Z). If the sequence is ape-
riodic, the Perron–Frobenius eigenvalue λPF is given in column 3. The type of isolated singularity, if any, is in column 4. The path in the diagram of Figure 2 is shown in column 5.

Table 1.  A few possible paths in the Figure 2 diagram that terminates at path six (healthy) or three, seven, or eight (potential disease)

Sequence rel Path

EGR123 GCGTGGGCG 1→2→4→5→6

FOS23 TGAGTCA 1→2→4→5→{6,8}

Nanog23 TAATGG 1→2→4→{7,8}

DBX TTTATTA 1→2→4→5→8

TATA TATAAAA 1→2→3→(7,8)

Poly(A) (rel1) AAUAAA 1→2→3→{7,8}

Poly(A) (rel2) UGUAA 1→2→4→{7,8}

Shine-Dalgarno (rel3) AGGAGGU 1→2→4→5→8

Kozak (rel4) ACCAUGGC 1→2→4→5→{6,8}

Kozak (rel4′) CCCAUGGC 1→2→4→7

hsa-mir-122-5p36(seed0) GGAGUGU 1→2→4→5→6

hsa-mir-132-5p (https://fr.wikipedia.org/wiki/Micro-ARN_7) CCGUGGC 1→2→4→5→6

mir-503-5p (seed1)37 AGCAGCGG 1→2→5→8

mir-146a-5p (seed2)40 GAGAAC 1→2→{7,8}

hsa-mir-7-5p (https://en.wikipedia.org/wiki/MiR-132) GGAAGA 1→2→{3,7,8}

hsa-mir-7-5p GGAAGAC 1→2→4→5→6

hsa-mir-7-3p AACAAAU 1→2→4→7

hsa-mir-155-3p31,40 UCCUAC 1→2→4→{7,8}

hsa-mir-155-3p UCCUACA 1→2→3

The set {6,8} denotes a lack of a clear conclusion of the existence of an isolated singularity. The selected examples are displayed in three parts that are transcription factors (first 
group), regulating elements in introns (second group) and miRNAs (third group). Details are given in the text. Otherwise a reference is provided.
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